Abstract

Partial removal of haloaromatic antimicrobial triclocarban (TCC) during wastewater treatment caused the final introduction of residual TCC into soils. Bioaugmentation has been proposed for the biodegradation of TCC and its dechlorinated congeners 4,4′-dichlorocarbanilide (DCC) and carbanilide (NCC) in soil. The isolated TCC-degrading strain Ochrobactrum sp. TCC-2 and chloroanilines-degrading strain Diaphorobacter sp. LD72 were used to study the removal efficiency of TCC, DCC and NCC mixture and their chloroanilines intermediates, respectively. The potential degradation competition between TCC and its dechlorinated congeners, and the response of bacterial community during the bioremediation were also investigated. The biodegradation of DCC and TCC was significantly enhanced for soil with inoculums compared with sterilized and natural soils. Chloroanilines products could also be effectively removed. For the degradation of combined substrates in the aqueous medium, NCC had negative effect on the degradation of TCC and DCC, while TCC and DCC negatively influenced each other. The bioaugmentation with two degraders obviously changed the phylogenetic composition and function of indigenous soil microbiome. Importantly, the inoculated degraders could be maintained, suggesting their adaptability and potential application in bioaugmentation for such recalcitrant contaminants. This study offers new insights into the enhanced bioremediation of TCC and its dechlorinated congeners contaminated soils by the bioaugmentation of functional degraders and the structure and function response of the indigenous soil microbiome to the bioremediation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.