Abstract
Dental clinics have a potential risk of infection, particularly during the COVID-19 pandemic. Multi-compartment dental clinics are widely used in general hospitals and independent clinics. This study utilised computational fluid dynamics to investigate the bioaerosol distribution characteristics in a multi-compartment dental clinic through spatiotemporal distribution, working area time-varying concentrations, and key surface deposition. The infection probability of SARS-CoV-2 for the dental staff and patients was calculated using the Wells–Riley model. In addition, the accuracy of the numerical model was verified by field measurements of aerosol concentrations performed during a clinical ultrasonic scaling procedure. The results showed that bioaerosols were mainly distributed in the compartments where the patients were treated. The average infection probability was 3.8% for dental staff. The average deposition number per unit area of the treatment chair and table are 28729 pcs/m2 and 7945 pcs/m2, respectively, which creates a possible contact transmission risk. Moreover, there was a certain cross-infection risk in adjacent compartments, and the average infection probability for patients was 0.84%. The bioaerosol concentrations of the working area in each compartment 30 min post-treatment were reduced to 0.07% of those during treatment, and the infection probability was <0.05%. The results will contribute to an in-depth understanding of the infection risk in multi-compartment dental clinics, forming feasible suggestions for management to efficiently support epidemic prevention and control in dental clinics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.