Abstract

Intestinal barrier function is closely related to intestinal health and diseases. Recent studies demonstrate that some probiotic and commensal bacteria secrete metabolites that are capable of affecting the intestinal functions. The present study examined an enhancing effect of bioactive factors secreted by Bifidobacterium breve strain B-3 on the intestinal tight junction (TJ) barrier integrity in human intestinal Caco-2 cells. Administration of conditioned medium obtained from B. breve strain B-3 (B3CM) to Caco-2 cells for 24 h increased trans-epithelial electrical resistance (TER), a TJ barrier indicator, across their monolayers. Immunoblot, immunofluorescence, and qPCR analyses demonstrated that B3CM increased an integral TJ protein, claudin-4 expression. In luciferase reporter assay, the administration of B3CM enhanced the claudin-4 promoter activity, indicating the transcriptional upregulation of claudin-4. Site-directed mutation of specificity protein 1 (Sp1) binding sites in the claudin-4 promoter sequence and suppression of Sp1 expression by siRNA technology clearly reduced the enhancing effect of B3CM on claudin-4 promoter activity. Liquid chromatography/mass spectrometry detected a significant amount of acetic acid in B3CM (28.3 mM). The administration of acetic acid to Caco-2 cells partially mimicked a B3CM-mediated increase in TER, but failed to increase claudin-4 expression. Taken together, bioactive factors secreted by B. breve B-3 enhanced the TJ barrier integrity in intestinal Caco-2 cells. Transcriptional regulation of claudin-4 through Sp1 is at least in part one of the underlying molecular mechanisms. In addition, acetic acid contributes to the B3CM-mediated barrier effect independently of claudin-4 expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.