Abstract

Zinc homeostasis was studied at the tissue and gill subcellular levels in rainbow trout ( Oncorhynchus mykiss) following waterborne and dietary exposures, singly and in combination. Juvenile rainbow trout were exposed to 150 or 600 μg l −1 waterborne Zn, 1500 or 4500 μg g −1 dietary Zn, and a combination of 150 μg l −1 waterborne and 1500 μg g −1 dietary Zn for 40 days. Accumulation of Zn in tissues and gill subcellular fractions was measured. At the tissue level, the carcass acted as the main Zn depot containing 84–90% of whole body Zn burden whereas the gill held 4–6%. At the subcellular level, the majority of gill Zn was bioavailable with the estimated metabolically active pool being 81–90%. Interestingly, the nuclei-cellular debris fraction bound the highest amount (40%) of the gill Zn burden. There was low partitioning of Zn into the detoxified pool (10–19%) suggesting that sequestration and chelation are not major mechanisms of cellular Zn homeostasis in rainbow trout. Further, the subcellular partitioning of Zn did not conform to the spill-over model of metal toxicity because Zn binding was indiscriminate irrespective of exposure concentration and duration. The contribution of the branchial and gastrointestinal uptake pathways to Zn accumulation depended on the tissue. Specifically, in plasma, blood cells, and gill, uptake from water was dominant whereas both pathways appeared to contribute equally to Zn accumulation in the carcass. Subcellularly, additive uptake from the two pathways was observed in the heat-stable proteins (HSP) fraction. Toxicologically, Zn exposure caused minimal adverse effects manifested by a transitory inhibition of protein synthesis in gills in the waterborne exposure. Overall, subcellular fractionation appears to have value in the quest for a better understanding of Zn homeostasis and interactions between branchial and gastrointestinal uptake pathways.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.