Abstract

Black liquor gasification (BLG) for bio-fuel or electricity production at the modern pulp mills is a field in continuous evolution and the efforts are considerably driven by the climate change, fuel security, and renewable energy. This paper evaluates and compares two BLG systems for methanol production: (i) oxygen blown pressurized thermal BLG; and (ii) dry BLG with direct causticization, which have been regarded as the most potential technology candidates for the future deployment. A key objective is to assess integration possibilities of BLG technologies with the reference Kraft pulp mill producing 1000 air dried tonnes (ADt) pulp/day replacing conventional recovery cycle. The study was performed to compare the systems’ performance in terms of potential methanol production, energy efficiency, and potential CO 2 reductions. The results indicate larger potential of black liquor conversion to methanol from the pressurized BLG system (about 77 million tonnes/year of methanol) than the dry BLG system (about 30 million tonnes/year of methanol) utilizing identical amount of black liquor available worldwide (220 million tDS/year). The potential CO 2 emissions reduction from the transport sector is substantially higher in pressurized BLG system (117 million tonnes/year CO 2 reductions) as compared to dry BLG system (45 million tonnes/year CO 2 reductions). However, the dry BLG system with direct causticization shows better results when considering consequences of additional biomass import. In addition, comparison of methanol production via BLG with other bio-refinery products, e.g. hydrogen, dimethyl ether (DME) and bio-methane, has also been discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.