Abstract

Among renewable and sustainable energy resources, biomass plays a vital role. Agricultural residues/wastes, energy crops, and lignocellulosic biomass could potentially be major feedstocks for biorefineries. In Thailand, one of the most interesting energy crops is hybrid giant Juncao grass (GJG) or Pennisetum purpureum×Pennisetum typhoideum. GJG can be easily grown and has relatively high yields under tropical climates. Herein, conversion of GJG to biofuels via hydrothermal liquefaction (HTL) was investigated using batch reactors under varying reaction temperatures of 250–350 °C and biomass-to-deionized water concentrations of 15–25 wt% at a fixed residence time of 30 min. Changes in temperature and GJG-to-deionized water concentration were found to markedly affect the yields and distribution of products from HTL of GJG. Yields of the liquid product, or bio-oil, can be up to 50 wt% at 350 °C and 25 wt% GJG-to-deionized water concentration. The yields of solid char and gas products fluctuated within 10–25 wt% and 30–45 wt%, respectively. Higher heating values of the resulting bio-oil and char were remarkably better than those of the raw material. An energy recovery of over 50% from the bio-oil, as well as about 35% from the char, can be obtained. By gas chromatograph-mass spectrometry and nuclear magnetic resonance, the bio-oil obtained was found to be a complex chemical mixture, consisting mainly of phenols, nitrogenous compounds, aliphatic compounds, ketones, carboxylic acids, and aldehydes. The finding is useful in future utilization of GJG via HTL for biofuel and/or biochemical production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.