Abstract

This study reports a greener, cheaper and convenient approach to synthesize Terminalia arjuna bark extract coated magnetite nanoparticles (TA@MNPs) using the co-precipitation method and efficient removal of methylene blue (MB) and lead ions [Pb(II)] from simulated wastewater. The synthesized nanoparticles (NPs) were characterized by various techniques such as DLS, XRD, FTIR, HRTEM, AGM, and TGA. From TGA analysis, TA@MNPs was found to be stable even after 500 °C. Using the batch method, maximum removal was achieved at pH 9.0 for MB and pH 3.0 for Pb(II) solutions, respectively. Adsorption study showed that TA@MNPs followed pseudo-second-order kinetics by both adsorbates while isotherm modeling towards adsorption of Pb(II) and MB exhibited Langmuir and Freundlich isotherm respectively. The maximum adsorption capacity for Pb(II) on TA@MNPs was 210.5 mg g−1. The thermodynamic study proved the spontaneity of the physisorption process. Regeneration studies were also performed using five different eluents for the two adsorbents. Overall, TA@MNPs effectively removed pollutants from wastewater and thus could be potentially useful in providing clean water in a cheaper way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.