Abstract

The shape-morphing actuator that structurally and functionally biomimics natural muscle is an active research field. We present a novel twisting-bending coupled self-helix (TBSH) structure driven by reversible shape-morphing between a compact and extended helix at a human-friendly temperature. The following two independent deformations were induced on each perpendicular axis of a hydrogel fiber to obtain a hydrogel helix by mimicking the vorticella: 1) twisting in cross sections induced by pretwisted nylon spring and nontwisted poly(N-isopropylacrylamide) (PNIPAM) hydrogel, called torsional strain mismatch, and 2) bending in the longitudinal direction induced by a nonexpandable nylon spring and expandable PNIPAM hydrogel in a noncoaxial structure, called tensile strain mismatch. The TBSH was formed by the force balance, resulting in reversible shape-morphing with a change in the mechanical properties of PNIPAM (lower critical solution temperature = 33ºC). The elastic modulus increased with increasing temperatures, resulting in a shape change from a compact helix to an extended helix. The TBSH has three remarkably advanced characteristics: 1) a high tensile stroke (165%) with shape-morphing (11 times higher than that with only the PNIPAM fiber (−15%)), 2) extension with increasing temperature, the opposite the contraction of the previous thermally responsive actuator, and 3) fast extension within 3 s under an immediate temperature increment. The novel actuator can be applied in various industries, such as smart textiles and automatic thermostat systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.