Abstract

Recently, Gillespie introduced the tau-leap approximate, accelerated stochastic Monte Carlo method for well-mixed reacting systems [J. Chem. Phys. 115, 1716 (2001)]. In each time increment of that method, one executes a number of reaction events, selected randomly from a Poisson distribution, to enable simulation of long times. Here we introduce a binomial distribution tau-leap algorithm (abbreviated as BD-tau method). This method combines the bounded nature of the binomial distribution variable with the limiting reactant and constrained firing concepts to avoid negative populations encountered in the original tau-leap method of Gillespie for large time increments, and thus conserve mass. Simulations using prototype reaction networks show that the BD-tau method is more accurate than the original method for comparable coarse-graining in time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.