Abstract

As we know, for autonomous robots working in a complex underwater region, obstacle avoidance design will play an important role in underwater tasks. In this paper, a binocular-vision-based underwater obstacle avoidance mechanism is discussed and verified with our self-made Underwater Quadrocopter Vehicle. The proposed Underwater Quadrocopter Vehicle (UQV for short), like a quadrocopter drone working underwater, is a new kind of Autonomous Underwater Vehicle (AUV), which is equipped with four propellers along the vertical direction of the robotic body to adjust its body posture and two propellers arranged at the sides of the robotic body to provide propulsive and turning force. Moreover, an underwater binocular-vision-based obstacle positioning method is studied to measure an underwater spherical obstacle’s radius and its distance from the UQV. Due to its perfect ability of full-freedom underwater actions, the proposed UQV has obvious advantages such as a zero turning radius compared with existing torpedo-shaped AUVs. Therefore, one semicircle-curve-based obstacle avoidance path is planned on the basis of an obstacle’s coordinates. Practical pool experiments show that the proposed binocular vision can locate an underwater obstacle accurately, and the designed UQV has the ability to effectively avoid multiple obstacles along the predefined trajectory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.