Abstract
Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analogue of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein bearing little sequence or structural resemblance to the highly structured ubiquitin. Thus it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled-coils that recognize Pup. Mpa binds unstructured Pup via hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an α-helix in Pup. Our work revealed a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This critical difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment of tuberculosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.