Abstract

We previously measured the amounts of Na+ and K+ ions bound to the Na+,K+-dependent ATPase [EC 3.6.1.3] purified from porcine kidney by a modified membrane filtration method [(1979) J. Biochem. 86, 509--523]. In this study, we improved the method for measuring the amount of the active site and measured the amount of Rb+ ions (a K+ congener) bound to the ATPase as well as those of Na+ and K+ ions to get more accurate information on the K+- and Na+-binding sites. The following results were obtained. Two kinds of cation-binding sites were found to exist on the ATPase molecule. One was the Na+-binding sites (3 mol per mol of active site). Na+ ions were bound to the sites cooperatively (Hill coefficient, 2.5--3), and the apparent dissociation constant was 0.20--0.32 mM. Three moles of Na+ ions bound to the sites was displaced by 1 mol of K+ ions bound to the ATPase (phi K, 24 microM). The other was the K+-binding sites (2 mol per mol of active site). Two moles of K+, Rb+, or Na+ ions was bound to the sites cooperatively (Hill coefficient, 1.5--2), and their apparent dissociation constants were 0.044, 0.024, and 2.2 mM, respectively. We measured the amounts of Na+ and Rb+ ions bound to the ATPase in the presence of 0.8 mM NaCl and 0.13 mM RbCl, and obtained unequivocal evidence for the simultaneous binding of 3 mol of Na+ ions and 2 mol of Rb+ ions per mol of active site of the ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.