Abstract
The binding of N-(p-ethoxy-phenyl)-N'-(1-naphthyl)thiourea (EPNT) to human serum albumin (HSA) was investigated under simulative physiological conditions by fluorescence spectra in combination with UV absorption spectroscopy and a molecular modeling method. A strong fluorescence quenching reaction of EPNT to HSA was observed, and the quenching mechanism was suggested to be static quenching according to the Stern-Volmer equation. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (DeltaH) and entropy change (DeltaS), were calculated according to relevant fluorescent data and the vant' Hoff equation. This indicated that a hydrophobic interaction was a predominant intermolecular force for stabilizing the complex, which is in agreement with the results of molecule modeling study. The effects of energy transfer and other ions on the binding constant were considered. In addition, synchronous fluorescence technology was successfully applied to the determination of HSA added into the EPNT solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.