Abstract

Mechanical strains in a multilayer Ge/Si(001) heterostructure with vertically aligned Ge nanoclusters (quantum dots) are calculated using an interatomic potential based on the Keating valence-force-field model. It is found that the nonuniform spatial elastic strain distribution in this medium gives rise to a three-dimensional potential well for electrons in the strained Si layers near Ge nanoclusters. The depth of the potential well reaches 100 meV, and its spatial dimensions are determined by the diameter of the Ge nanoclusters. For a structure consisting of four Ge islands 23 nm in diameter arranged one above another, the electron binding energies in this well and the spatial electron density distribution are determined. The ground state has an s-like symmetry and is characterized by an electron binding energy of ∼95 and ∼60 meV for the elemental composition of Ge in the nanoclusters c = 1 and c = 0.7, respectively. The existence of bound electron states in the conduction band of strained Si must lead to a relaxation of the selection rules that determine the low efficiency of the radiative recombination in indirect-gap semiconductors. This explains the high value of the oscillator strength observed for the interband transitions in multilayer Ge/Si(001) structures with vertical correlation of the arrangement of Ge nanoclusters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.