Abstract

Alterations in chromatin structure dynamically occur during germline development in Drosophila and are essential for the production of functional gametes. We had previously reported that the maternal factor Mamo, which contains both a BTB/POZ domain and C2H2 zinc-finger domains and is enriched in primordial germ cells (PGCs), is required for the regulation of meiotic chromatin structure and the production of functional gametes. However, the molecular mechanisms by which Mamo regulates germline development remained unclear. To evaluate the molecular function of Mamo protein, we have investigated the binding of Mamo to chromatin and DNA sequences. Our data show that Mamo binds to chromatin and specific DNA sequences, particularly the polytene chromosomes of salivary gland cells. Overexpression of Mamo affected the organization of polytene chromosomes. Reduction in maternal Mamo levels impaired the formation of germline-specific chromatin structures in PGCs. Furthermore, we found that the zinc-finger domains of Mamo directly bind to specific DNA sequences. Our results suggest that Mamo plays a role in regulating chromatin structure in PGCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.