Abstract

The use of Porphyrin derivatives as photosensitizers in Photodynamic Therapy (PDT) was investigated by means of a molecular docking study. These molecules can bind to intracellular targets such as P-type CaCa2+ ATPase of sarcoplasmic reticulum (SERCA1a). CAChe software was successfully employed for conducting the docking of Tetraphenylporphinesulfonate(TPPS), 5,10,15,20- Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) Chloride (FeTPPS) and 5,10,15,20-Tetrakis (4-sulfonatophenyl) porphyrinato Iron(III) nitrosyl Chloride (FeNOTPPS) with CaCa2+ ATPase from sarcoplasmic reticulum of rabbit. The results show that FeNOTPPS forms the most stable complex with CaCa2+ ATPase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.