Abstract

This study presents a new equation of state (EOS) for charged hard sphere fluids that incorporates ion-ion association. The EOS is developed using the Debye-Hückel (DH) theory, reference cavity approximation, and Wertheim's theory. Predictive accuracy is evaluated by comparing the model's predictions with Monte Carlo simulations for various charged hard-sphere fluids. The assessment focuses on mean ionic activity coefficient, individual ionic activity coefficient, and osmotic coefficients. The results demonstrate good agreement between the model and simulations, indicating its success for different electrolyte systems. Incorporating ion-ion association improves accuracy compared to the DH theory. The importance of the cavity function and ion-dipole interactions is emphasized in accurately representing structural properties. Overall, the developed EOS shows promising predictive capabilities for charged hard sphere fluids, providing validation and highlighting the significance of ion-ion association in thermodynamic predictions of electrolyte solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.