Abstract

AbstractThere is strong demand for higher energy density and flexible lithium ion batteries recently. Unfortunately, electrodes built by conventional methods cannot meet these requirements simultaneously due to the large amount of inactive additives needed for sufficient flexibility. Herein, by utilizing a continuous single‐walled carbon nanotube reticulation and designing an all‐in‐one hierarchical configuration, binder‐free electrodes are fabricated via an in situ integration procedure. The electrode exhibits excellent electrochemical performance against up to 20 000 cycles of bending and high energy density (up to 493 Wh kg−1electrode and 820 Wh L−1electrode). The hierarchical configuration takes full diverse advantages of different carbon nanostructures. The as‐obtained novel binder‐free electrodes exhibit not only good cyclability (up to ≈90% capacity retentions after 1500 cycles) with only 4 wt% additive materials, but also show enhanced kinetic process, in comparison to those of traditional electrodes. Furthermore, based on the as‐designed electrodes, flexible cells are assembled and a practical wearable system is fabricated, manifesting that they can be used in a stable and flexible power supply for smart systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.