Abstract

Speech reception thresholds (SRTs) decrease as target and maskers are spatially separated (spatial release from masking, SRM). The current study systematically assessed how SRTs and SRM for a frontal target in a spatially symmetric masker configuration depend on spectro-temporal masker properties, the availability of short-time interaural level difference (ILD) and interaural time difference (ITD), and informational masking. Maskers ranged from stationary noise to single, interfering talkers and were modified by head-related transfer functions to provide: (i) different binaural cues (ILD, ITD, or both) and (ii) independent maskers in each ear ("infinite ILD"). Additionally, a condition was tested in which only information from short-time spectro-temporal segments of the ear with a favorable signal-to-noise ratio (better-ear glimpses) was presented. For noise-based maskers, ILD, ITD, and spectral changes related to masker location contributed similarly to SRM, while ILD cues played a larger role if temporal modulation was introduced. For speech maskers, glimpsing and perceived location contributed roughly equally and ITD contributed less. The "infinite ILD" condition might suggest better-ear glimpsing limitations resulting in a maximal SRM of 12 dB for maskers with low or absent informational masking. Comparison to binaural model predictions highlighted the importance of short-time processing and helped to clarify the contribution of the different binaural cues and mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.