Abstract

We introduce discrete pushdown timed automata that are timed automata with integer-valued clocks augmented with a pushdown stack. A configuration of a discrete pushdown timed automaton includes a control state, finitely many clock values and a stack word. Using a pure automata-theoretic approach, we show that the binary reachability (i.e., the set of all pairs of configurations (α,β), encoded as strings, such that α can reach β through 0 or more transitions) can be accepted by a nondeterministic pushdown machine augmented with reversal-bounded counters (NPCM). Since discrete timed automata with integer-valued clocks can be treated as discrete pushdown timed automata without the pushdown stack, we can show that the binary reachability of a discrete timed automaton can be accepted by a nondeterministic reversal-bounded multicounter machine. Thus, the binary reachability is Presburger. By using the known fact that the emptiness problem is decidable for reversal-bounded NPCMs, the results can be used to verify a number of properties that can not be expressed by timed temporal logics for discrete timed automata and CTL* for pushdown systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.