Abstract

The thermotropic phase behavior of binary mixtures of dimyristoylphosphatidylcholine with dimyristoyl glycerol (DMPC-DMG) has been studied in aqueous dispersion by using differential scanning calorimetry and spin label electron spin resonance spectroscopy. Phase identifications have been made by means of (31)P nuclear magnetic resonance spectroscopy and x-ray diffraction. The binary phase diagram of DMPC-DMG mixtures displays three regions corresponding to the existence of compounds (C1 and C2, respectively) with approximately 1:1 and 1:2 mol/mol DMPC:DMG stoichiometries. The first region displays immiscibility between DMPC and C1 in the low temperature lamellar phase and miscibility of the components in the fluid phase that is lamellar. The second region displays immiscibility between C1 and C2 in the low temperature phase that is lamellar, whereas the fluid phase is of the inverted hexagonal type (H(II)). The third region displays immiscibility between C2 and DMG in the low temperature phase that is lamellar, whereas the fluid phase is isotropic. The presence of immiscible DMG in the low temperature phase of the third region is indicated by hysteresis in the temperature scans corresponding to conversion between the stable and metastable crystalline polymorphs. Analysis of the first region of the phase diagram using regular solution theory further demonstrates the existence of a DMPC:DMG complex with approximately 1:1 stoichiometry and provides parameters for the nonideality of mixing in the fluid phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.