Abstract
Mixing of ionic liquids (ILs) can expand the range of properties and versatility of this new class of solvents. Exploiting this potential requires a fundamental understanding of the mixing behavior of ILs. In this study, we have investigated binary IL mixtures involving a common cation (1-butyl-3-methylimidazolium) with two commonly used anions (chloride, bromide, tetrafluoroborate, hexafluorophosphate or bis(trifluoromethanesulfonyl)imide ([NTf2]−)) by means of IR spectroscopy. Upon mixing the ILs, significant changes in the anion IR bands are induced, indicating mixing at the molecular level for highly symmetric anions. Furthermore, density functional theory (DFT) calculations show water to be a suitable probe molecule: IR bands of anion-1···H–O–H···anion-2, anion-1···H–O–H···anion-1, and anion-2···H–O–H···anion-2 are well suitable for inspection and quantification of the coexistence of each type of cluster. In contrast to some previous spectroscopic investigations, this work suggests good molecular mixing and the absence of nanosegregation in these binary ILs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.