Abstract
With appropriate choice of conditions, copolymerization of monosubstituted monomers [CH2CHX: e.g., styrene, butyl acrylate (BA)] in the presence of small amounts of an α-methylvinyl monomer [CH2C(CH3)Y: e.g., α-methylstyrene (AMS), methyl methacrylate (MMA), methacrylonitrile (MAN)] and a cobaloxime as chain transfer catalyst provides a route to macromonomers that are composed largely of the monosubstituted monomer and yet have a chain end derived from the α-methylvinyl monomer (−CH2−C(CH2)Y). The various factors (temperature, concentrations, type of cobaloxime, types of monomer) that influence molecular weight and end group purity and the importance of the various side reactions that may complicate the process are described. Macromonomer purity is enhanced by increasing the concentration of the α-methylvinyl monomer and reducing the cobaloxime concentration. It also depends on the structure of the cobaloxime, increasing in the series where the ligands are derived from dimethyl glyoxime < diethyl glyoxi...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.