Abstract
When the binary response variable contains an excess of zero counts, the data are imbalanced. Imbalanced data cause trouble for binary classification. To simplify the numerical computation to obtain the maximum likelihood estimators of the zero-inflated Bernoulli (ZIBer) model parameters with imbalanced data, an expectation-maximization (EM) algorithm is proposed to derive the maximum likelihood estimates of the model parameters. The logistic regression model links the Bernoulli probabilities with the covariates in the ZIBer model, and the prediction performance among the ZIBer model, LightGBM, and artificial neural network (ANN) procedures is compared by Monte Carlo simulation. The results show that no method can dominate the other methods regarding predictive performance under the imbalanced data. The LightGBM and ZIBer models are more competitive than the ANN model for zero-inflated-imbalanced data sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.