Abstract

This work for the first time reports bimetallic Ni–Co and monometallic (Ni and Co) nanoparticles (NPs)-engineered carbon nitride nanotubes with nitrogen vacancies (V-CNNTs) for visible-light photocatalytic H2 generation application. The bimetallic Ni–Co NPs have an average size of less than 5 nm and are homogenously dispersed along the nanochannels of V-CNNTs. The composition of the bimetallic NPs plays an essential role to maximize photocatalytic activity. With the optimal Ni/Co atom ratio of 3:1, Ni–Co/V-CNNTs nanohybrids yielded a H2 production rate of 4.19 μmol/h, which is higher than those of monometallic counterparts and V-CNNTs. The intimately loaded Ni–Co NPs and incorporated nitrogen vacancies enhance the photocatalytic performance through extended light absorption, abundant active sites, strong metal-support interaction, and efficient charge carrier transfer along the axial direction. This study presents a stable and highly efficient hybrid as a promising photocatalyst for visible light photocatalytic H2 production through water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.