Abstract
As a promising energy conversion equipment, the performance of microbial fuel cell (MFC) is affected by slow kinetics of oxygen reduction reaction (ORR). It is of great significance to explore electrocatalysts with high activity for sustainable energy applications. Herein, we synthesize the in-situ grown carbon nanotubes decorated electrocatalyst derived from copper-based metal organic frameworks (MOFs) co-doped with cobalt and nitrogen (CuCo@NCNTs) through straightforward immersion and pyrolysis process. The carbon nanotubes produced by metallic cobalt and high-activity bimetallic active sites formed by nitrogen doping enable CuCo@NCNTs to have the best oxygen reduction reaction (ORR) performance in alkaline electrolyte, with limit current density of 5.88 mA cm−2 and onset potential of 0.91 V (vs. RHE). Moreover, CuCo@NCNTs nanocomposite exhibits obvious antibacterial activity, and inhibiting the biofilm on cathode surface in antibacterial test and biomass quantification. The maximum power density (2757 mW m−3) of MFC modified with CuCo@NCNTs is even higher than Pt/C catalyst (2313 mW m−3). In short, CuCo@NCNTs nanocomposite can be an alternative cathode catalyst for MFC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.