Abstract

Bimetallic Au@Pt@Au triple-layered core-shell nanoparticles consisting of a Au core, Pt inner shell, and an outer shell composed of Au protuberances on graphene oxide (GO) nanosheets were successfully prepared by a galvanic replacement and reagent reduction reaction. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and cyclic voltammetry (CV) were employed to characterize the GO-supported Au@Pt@Au (GO/Au@Pt@Au) nanocomposites. The as-prepared catalyst has peroxidase-like activity, allowing it to express high electrocatalytic ability in hydrogen peroxide (H2O2) oxidation and reduction, thus leading to a highly sensitive H2O2 bi-directional amperometric sensing. The bi-directional sensor showed a linear range from 0.05 μM to 17.5 mM with a detection limit of 0.02 μM (S/N = 3) at an applied potential of +0.5 V and a linear range from 0.5 μM to 110 mM with a detection limit of 0.25 μM (S/N = 3) at an applied potential of -0.3 V. The proposed sensor was tested to determine H2O2 released from living cells and shows good application potential in biological electrochemistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.