Abstract

BackgroundEpidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib. These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. However, the key proapoptotic proteins involved in TKI-induced cell death and other secondary mutations involved in resistance remain unclear. The objective of this study was to identify the mechanism of EGFR TKI-induced apoptosis and secondary resistant mutations that affect this process.Methods and FindingsTo study TKI-induced cell death and mechanisms of resistance, we used lung cancer cell lines (with or without EGFR mutations), Ba/F3 cells stably transfected with EGFR mutation constructs, and tumor samples from a gefitinib-resistant patient. Here we show that up-regulation of the BH3-only polypeptide BIM (also known as BCL2-like 11) correlated with gefitinib-induced apoptosis in gefitinib-sensitive EGFR-mutant lung cancer cells. The T790M mutation blocked gefitinib-induced up-regulation of BIM and apoptosis. This blockade was overcome by the irreversible TKI CL-387,785. Knockdown of BIM by small interfering RNA was able to attenuate apoptosis induced by EGFR TKIs. Furthermore, from a gefitinib-resistant patient carrying the activating L858R mutation, we identified a novel secondary resistant mutation, L747S in cis to the activating mutation, which attenuated the up-regulation of BIM and reduced apoptosis.ConclusionsOur results provide evidence that BIM is involved in TKI-induced apoptosis in sensitive EGFR-mutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinib-induced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations. These findings also suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors.

Highlights

  • Sequencing of the epidermal growth factor receptor (EGFR) gene in a large number of tumor samples has identified somatic activating mutations in the tyrosine-kinase pocket of Epidermal growth factor receptor (EGFR) [1,2]

  • Our results provide evidence that BIM short (BIMs) is involved in tyrosine kinase inhibitor (TKI)-induced apoptosis in sensitive EGFRmutant cells and that both attenuation of the up-regulation of BIM and resistance to gefitinibinduced apoptosis are seen in models that contain the common EGFR T790M and the novel L747S secondary resistance mutations

  • These findings suggest that induction of BIM may have a role in the treatment of TKI-resistant tumors

Read more

Summary

Introduction

Sequencing of the epidermal growth factor receptor (EGFR) gene in a large number of tumor samples has identified somatic activating mutations in the tyrosine-kinase pocket of EGFR [1,2] These mutations were first described in non-small cell lung cancer (NSCLC) patients treated with specific EGFR tyrosine kinase inhibitors (TKIs)—gefitinib and erlotinib— who had radiographic and clinical responses to such agents [3,4,5]. Epidermal growth factor receptor (EGFR) mutations are present in the majority of patients with non-small cell lung cancer (NSCLC) responsive to the EGFR tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib These EGFR-dependent tumors eventually become TKI resistant, and the common secondary T790M mutation accounts for half the tumors with acquired resistance to gefitinib. TKI treatment can dramatically shrink this subset of NSCLCs, most of which lack a specific part of EGFR (the gene that encodes EGFR) or have the amino acid leucine instead of arginine at position 858 (an L858R mutation) of EGFR

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.