Abstract

Abstract In this paper, Hirota’s bilinear method is extended to a new modified Kortweg–de Vries (mKdV) hierarchy with time-dependent coefficients. To begin with, we give a bilinear form of the mKdV hierarchy. Based on the bilinear form, we then obtain one-soliton, two-soliton and three-soliton solutions of the mKdV hierarchy. Finally, a uniform formula for the explicit N-soliton solution of the mKdV hierarchy is summarized. It is graphically shown that the obtained soliton solutions with time-dependent functions possess time-varying velocities in the process of propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.