Abstract

We suggest here a method for construction of a bilinear expansion for an angle-averaged redistribution function. This function describes the elementary act of a photon scattering by a model two-level atom with the upper level broadened due to radiation damping. An eigenvalue and eigenvector determination problem is formulated and the relevant matrices are found analytically. Numerical procedures for their computations are elaborated as well. A simple method for the numerical calculations accuracy evaluation is suggested. It is shown that a family of redistribution functions describing the light scattering process within the spectral line frequencies can be constructed if the eigenvalue problem for the considered function is solved. It becomes possible if the eigenvalues and eigenvectors with the appropriate basic functions are used. The Voigt function and its derivatives used as basic functions are studied in detail as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.