Abstract
Aqueous zinc (Zn) batteries with Zn metal anodes are promising clean energy storage devices with intrinsic safety and low cost. However, Zn dendrite growth severely restricts the use of Zn anodes. To effectively suppress Zn dendrite growth, we propose a bilayer separator consisting of commercial butter paper and glass fiber membrane. The dense cellulose-based butter paper (BP) with low zincophilicity and high mechanical properties prevents the pore-filling behavior of deposited Zn and related separator piercing, effectively suppressing the Zn dendrite growth. As a result, the bilayer separators endow the Zn||Zn symmetrical batteries with a superlong cycling life of Zn anodes (over 5000 h) at 0.5 mA cm−2 and the full batteries enhanced capacity retention, demonstrating the advancement of the bilayer separator to afford excellent cyclability of aqueous metal batteries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.