Abstract

A novel method for creating bilayer graphene is described where single-layer CVD graphene grown on Cu is bonded to single-layer epitaxial graphene grown on Si-face SiC. Raman microscopy and x ray photoelectron spectroscopy demonstrate the uniqueness of this bilayer, as compared to a naturally formed bilayer, in that a Bernal stack is not formed with each layer being strained differently yet being closely coupled. Electrical characterization of Hall devices fabricated on the unusual bilayer show higher mobilities, and lower carrier concentrations, than the individual CVD graphene or epitaxial graphene layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.