Abstract
We identify a subcategory of biracks which define counting invariants of unoriented links, which we call involutory biracks. In particular, involutory biracks of birack rank N = 1 are biquandles, which we call bikei or 双圭. We define counting invariants of unoriented classical and virtual links using finite involutory biracks, and we give an example of a non-involutory birack whose counting invariant detects the non-invertibility of a virtual knot.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.