Abstract

In the past, a variety of mechanically interlocked systems such as catenanes and rotaxanes were constructed on the basis of Cu(I) coordination chemistry and endocyclic 1,10-phenanthroline ligands. This review reports on the coordination chemistry of a new family of endocyclic bidentate chelators that are sterically non-hindering, namely 8,8′-diaryl-substituted 3,3′-biisoquinolines. These ligands allow the construction of new multi-component assemblies that are inaccessible with the previously investigated 1,10-phenanthrolines. On the one hand, the sterically non-hindering nature of the new endocyclic chelators makes three-component entanglements around octahedral metal centres such as iron(II), cobalt(II) and ruthenium(II) readily possible. On the other hand, it permits the construction of copper-based molecular shuttles that exhibit shuttling kinetics that excels over those of previously investigated analogous systems with 1,10-phenanthrolines. Thus, within this class of molecular machines, a bigger chelator leads to faster molecular movement, i.e. to a better performance of the molecular machine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.