Abstract

We derive a rigorous estimate of the size of islands (in both phase space and parameter space) appearing in smooth Hamiltonian approximations of scattering billiards. The derivation includes the construction of a local return map near singular periodic orbits for an arbitrary scattering billiard and for the general smooth billiard potentials. Thus, universality classes for the local behavior are found. Moreover, for all scattering geometries and for many types of natural potentials which limit to the billiard flow as a parameter ϵ→0, islands of polynomial size in ϵ appear. This suggests that the loss of ergodicity via the introduction of the physically relevant effect of smoothening of the potential in modeling, for example, scattering molecules, may be of physically noticeable effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.