Abstract

The ability to collect and analyze large amounts of data is a growing problem within the scientific community. The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. One of the main challenges associated with big data variety is automatically understanding the underlying structures and patterns of the data. Such an understanding is required as a pre-requisite to the application of advanced analytics to the data. Further, big data sets often contain anomalies and errors that are difficult to know a priori. Current approaches to understanding data structure are drawn from the traditional database ontology design. These approaches are effective, but often require too much human involvement to be effective for the volume, velocity and variety of data encountered by big data systems. Dimensional Data Analysis (DDA) is a proposed technique that allows big data analysts to quickly understand the overall structure of a big dataset, determine anomalies. DDA exploits structures that exist in a wide class of data to quickly determine the nature of the data and its statical anomalies. DDA leverages existing schemas that are employed in big data databases today. This paper presents DDA, applies it to a number of data sets, and measures its performance. The overhead of DDA is low and can be applied to existing big data systems without greatly impacting their computing requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.