Abstract
We study the behavior of a Frisch-Hasslacher-Pomeau lattice gas automaton under the effect of a spatially periodic forcing. It is shown that the lattice gas dynamics reproduces the steady-state features of the bifurcation pattern predicted by a properly truncated model of the Navier-Stokes equations. In addition, we show that the dynamical evolution of the instabilities driving the bifurcation can be modeled by supplementing the truncated Navier-Stokes equation with a random force chosen on the basis of the automaton noise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.