Abstract
ABSTRACT Despite many similarities, there are significant observed differences between Uranus and Neptune: While Uranus is tilted and has a regular set of satellites, suggesting their accretion from a disc, Neptune’s moons are irregular and are captured objects. In addition, Neptune seems to have an internal heat source, while Uranus is in equilibrium with solar insulation. Finally, structure models based on gravity data suggest that Uranus is more centrally condensed than Neptune. We perform a large suite of high-resolution SPH simulations to investigate whether these differences can be explained by giant impacts. For Uranus, we find that an oblique impact can tilt its spin axis and eject enough material to create a disc where the regular satellites are formed. Some of the discs are massive and extended enough, and consist of enough rocky material to explain the formation of Uranus’ regular satellites. For Neptune, we investigate whether a head-on collision could mix the interior, and lead to an adiabatic temperature profile, which may explain its larger flux and higher moment of inertia value. We find that massive and dense projectiles can penetrate towards the centre and deposit mass and energy in the deep interior, leading to a less centrally concentrated interior for Neptune. We conclude that the dichotomy between the ice giants can be explained by violent impacts after their formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.