Abstract

The article considers a model system that describes a dynamically symmetric rigid body in the Lagrange case with a suspension point that performs high-frequency oscillations. This system, reduced to axes rigidly connected to the body, after the averaging procedure, has the form of the Hamilton equations with two degrees of freedom and has the Liouville integrability property of a Hamiltonian system with two degrees of freedom, which describes the dynamics of a Lagrange top with an oscillating suspension point. The paper presents a bifurcation diagram of the moment mapping. Using the bifurcation diagram, we presented in geometric form the results of the study of the problem of stability of singular points, in particular, singular points of rank zero and rank one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.