Abstract

In this paper, a three dimensional ratio-dependent chemostat model with periodically pulsed input is considered. By using the discrete dynamical system determined by the stroboscopic map and Floquet theorem, an exact periodic solution with positive concentrations of substrate and predator in the absence of prey is obtained. When β is less than some critical value the boundary periodic solution (x(subscript s)(t), 0, z(subscript s) (t)) is locally stable, and when β is larger than the critical value there are periodic oscillations in substrate, prey and predator. Increasing the impulsive period τ, the system undergoes a series of period-doubling bifurcation leading to chaos, which implies that the dynamical behaviors of the periodically pulsed ratio-dependent predator-prey ecosystem are very complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.