Abstract

A two-dimensional model is developed to study the flutter instability of a flag immersed in an inviscid flow. Two dimensionless parameters governing the system are the structure-to-fluid mass ratio M⁎ and the dimensionless incoming flow velocity U⁎. A transition from a static steady state to a chaotic state is investigated at a fixed M⁎=1 with increasing U⁎. Five single-frequency periodic flapping states are identified along the route, including four symmetrical oscillation states and one asymmetrical oscillation state. For the symmetrical states, the oscillation frequency increases with the increase of U⁎, and the drag force on the flag changes linearly with the Strouhal number. Chaotic states are observed when U⁎ is relatively large. Three chaotic windows are observed along the route. In addition, the system transitions from one periodic state to another through either period-doubling bifurcations or quasi-periodic bifurcations, and it transitions from a periodic state to a chaotic state through quasi-periodic bifurcations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.