Abstract

Axial-grooved gas-lubricated journal bearings have been widely applied to precision instrument due to their high accuracy, low friction, low noise and high stability. The rotor system with axial-grooved gas-lubricated journal bearing support is a typical nonlinear dynamic system. The nonlinear analysis measures have to be adopted to analyze the behaviors of the axial-grooved gas-lubricated journal bearing-rotor nonlinear system as the linear analysis measures fail. The bifurcation and chaos of nonlinear rotor system with three axial-grooved gas-lubricated journal bearing support are investigated by nonlinear dynamics theory. A time-dependent mathematical model is established to describe the pressure distribution in the axial-grooved compressible gas-lubricated journal bearing. The time-dependent compressible gas-lubricated Reynolds equation is solved by the differential transformation method. The gyroscopic effect of the rotor supported by gas-lubricated journal bearing with three axial grooves is taken into consideration in the model of the system, and the dynamic equation of motion is calculated by the modified Wilson-θ-based method. To analyze the unbalanced responses of the rotor system supported by finite length gas-lubricated journal bearings, such as bifurcation and chaos, the bifurcation diagram, the orbit diagram, the Poincare map, the time series and the frequency spectrum are employed. The numerical results reveal that the nonlinear gas film forces have a significant influence on the stability of rotor system and there are the rich nonlinear phenomena, such as the periodic, period-doubling, quasi-periodic, period-4 and chaotic motion, and so on. The proposed models and numerical results can provide a theoretical direction to the design of axial-grooved gas-lubricated journal bearing-rotor system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.