Abstract

In this paper, a wind turbine generator drive system with stochastic excitation under both displacement and velocity delayed feedback is considered. Firstly, the center manifold method is used to approximate the delay term of the system, so that the Itô-stochastic differential equation can be obtained by random average method. Through the maximal Lyapunov exponential method, the local stochastic stability and random D-bifurcation conditions of the system are obtained. Secondly, it is verified that the increase of noise intensity and delay value induces the occurrence of random P-bifurcation of the system through Monte Carlo numerical simulations. In addition, the theoretical chaos threshold of the system is derived by the random Melnikov method. The results show that the chaos threshold decreases as the noise intensity increases, and the increase in time delay leads to a delay in the chaotic behavior of the system. Finally, the correctness and effectiveness of the chaos-theoretic analysis are verified based on the one-parameter bifurcation diagrams and the two-parameter bifurcation diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.