Abstract

In this study, a ratiometric electrochemical sensor based on metal-organic frameworks (MOFs) was developed for sensing of multiplex metal ions. The bifunctional MOFs were prepared in a way to integrate two signal tags and a detection probe. In the presence of target metal ions, the target metal ions can replace the framework metal-ion center in the original MOFs through an ion-exchange reaction, leading to ratiometric electrochemical signals under different applied potentials. One consisted of the Cu2+ signal generated from electroactive MOFs selected as internal reference signals. The other consisted of the signal induced by other target metal ions. Using the Imetal ions/ICu2+ signal as the output, the prepared ratiometric probe was able to eliminate disturbance caused by the sensing environment. Moreover, the large surface area and abundant active sites in MOFs produced a multiplex ratiometric electrochemical sensor with improved characteristics in terms of reproducibility, stability, and sensitivity. The sensor was also simple without sophisticated instrumentation, amplification processes, or an acid dissolution/preconcentration procedure, hence promising for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.