Abstract

With reference to the organization of the human brain nervous system, a hardware-based approach that builds massively parallel neuromorphic circuits is of great significance to neuromorphic computing. The Bienenstock-Cooper-Munro (BCM) learning rule, which describes that the synaptic weight modulation exhibits frequency-dependent and tunable frequency threshold characteristics, is more compatible with the working principle of neuromorphic computing systems than spike-timing-dependent plasticity. Therefore, it is interesting to simulate the BCM learning rule on solid-state synaptic devices. Here, we have prepared λ-carrageenan (λ-car) electrolyte-gated oxide synaptic transistors, which exhibit good transistor performances, including a low subthreshold swing of 125 mV/dec, an on/off ratio larger than 106, and a mobility of 9.5 cm2 V-1 s-1. By modulating the initial channel current and spike frequency, the simulation of the BCM rule was successfully realized. The competitive relationship between the drift of protons under an electric field and the spontaneous diffusion of protons can explain this mechanism. The proposed λ-car-gated synaptic transistor has a great significance to neuromorphic computing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.