Abstract
In this paper, we performed multiangular measurements spanning a wide viewing range in a hemisphere space for three types of vegetation cover and analyzed the bidirectional reflectance factor (BRF) measurements based on basic physical reflectance mechanisms to ensure the accuracy of the data. The measurements and the results with the best fitted model parameters were evaluated to determine whether the BRF models produce vegetation cover reflectance factor values that are qualitatively the same as the measured values. These models effectively characterized the BRF of the vegetation cover at most of the selected wavelengths (565, 670, and 865 nm). However, for planophile vegetation cover with smooth leaves, the current BRF models did not produce accurate values in the selected visible wavelength range; the average relative difference was approximately 0.3 at 670 nm. Subsequently, we subtracted the specular reflectance factor (calculated using the bidirectional polarized reflectance factors) from the total BRF and compared these data with the modeled results. The difference between the measured and modeled BRFs was notably decreased when we separated the specular reflectance factor at 670 nm for the planophile vegetation cover with smooth leaves. Moreover, there was a different degree of improvement in the agreement between the measured and modeled results, which depended on the wavelength and the type of vegetation cover. These results indicated that the subtraction of the specular reflectance factor effectively improved the capability of the BRF models to calculate the diffuse portion of the BRF of the vegetation cover.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.