Abstract

AbstractSwitching systems operating in a cooperative manner capable of converting light energy into mechanical motion are of great interest for optical devices, data storage, nanoscale energy converters and molecular sensing. Herein, photoswitchable monolayers were formed at the air–water interface from either a pure bis(thiaxanthylidene)‐based photoswitchable amphiphile or from a mixture of the photoswitchable amphiphile with a conventional lipid dipalmitoylphosphatidylcholine (DPPC). Efficient photoisomerization of the anti‐folded to syn‐folded geometry of the amphiphile's central core induces changes in the surface pressure in either direction, depending on the initial molecular density. Additionally, the switching behavior can be regulated in the presence of DPPC, which influences the packing of the molecules, thereby controlling the transformation upon irradiation. Bis(thiaxanthylidene)‐based photoswitchable monolayers provide a promising system to explore cooperativity and amplification of motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.