Abstract

Robustly detecting keywords in human speech is an important precondition for cognitive systems, which aim at intelligently interacting with users. Conventional techniques for keyword spotting usually show good performance when evaluated on well articulated read speech. However, modeling natural, spontaneous, and emotionally colored speech is challenging for today’s speech recognition systems and thus requires novel approaches with enhanced robustness. In this article, we propose a new architecture for vocabulary independent keyword detection as needed for cognitive virtual agents such as the SEMAINE system. Our word spotting model is composed of a Dynamic Bayesian Network (DBN) and a bidirectional Long Short-Term Memory (BLSTM) recurrent neural net. The BLSTM network uses a self-learned amount of contextual information to provide a discrete phoneme prediction feature for the DBN, which is able to distinguish between keywords and arbitrary speech. We evaluate our Tandem BLSTM-DBN technique on both read speech and spontaneous emotional speech and show that our method significantly outperforms conventional Hidden Markov Model-based approaches for both application scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.