Abstract

The natural nucleic acids (DNA and RNA) can adopt a variety of structures besides the antiparallel double helix described by Watson and Crick, depending on base sequence and solvent conditions. Specifically base-paired DNA structures with regular backbone units include left-handed and parallel duplexes and triple and quadruple helical arrangements. Given the base-pairing pattern of the natural bases, preferences for how single strands associate are determined by the structure and flexibility of the sugar-phosphate backbone. We set out to determine the role of the backbone in complex formation by designing DNA analogs with well defined modifications in backbone structure. We recently developed a DNA analog (bicyclo-DNA) in which one (gamma) of the six torsion angles (alpha-zeta) describing the DNA-backbone conformation is fixed in an orientation that deviates from that observed in B-DNA duplexes by about + 100 degrees , a shift from the synclinal to the antiperiplanar range. Upon duplex formation between homopurine and homopyrimidine sequences, this analog preferentially selects the Hoogsteen and reversed Hoogsteen mode, forming A-T and G-C+ base pairs. Base-pair formation is highly selective, but degeneracy is observed with respect to strand orientation in the duplex. The flexibility and orientation of the DNA backbone can influence the preferences of the natural bases for base-pairing modes, and can alter the relative stability of duplexes and triplexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.