Abstract

We investigate schemes for the clean splitting of beams of three-level atoms using two standing-wave laser fields within an optical cavity. The proposed beam splitter is shown to work for atoms in the Λ ladder, and ssV configurations. For appropriate values of Rabi frequencies and detunings, we obtain a triangular type of potential for the atomic states of interest. As well as modeling the coherent evolution of the systems, we have used quantum Monte Carlo wave-function methods to model the effects of spontaneous emission on the resulting diffraction pattern, finding significant differences between the three configurations. We also investigate the limits of the Raman-Nath approximation for our systems, using the symmetric split-operator technique to include the effects of the kinetic term in the Hamiltonian. We also present the results of calculations in which the split output beams are recombined, demonstrating the expected interference for differently prepared input beams. In comparison with two-level beam splitters using a single standing wave, we obtain a superior splitting, while, in comparison with magneto-optical beam splitters, our system possesses the worthwhile practical advantages of experimental simplicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.